extension | φ:Q→Aut N | d | ρ | Label | ID |
C22.1(D4⋊2S3) = C6.342+ 1+4 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C22 | 96 | | C2^2.1(D4:2S3) | 192,1160 |
C22.2(D4⋊2S3) = C6.1152+ 1+4 | φ: D4⋊2S3/Dic6 → C2 ⊆ Aut C22 | 96 | | C2^2.2(D4:2S3) | 192,1177 |
C22.3(D4⋊2S3) = D8⋊5Dic3 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.3(D4:2S3) | 192,755 |
C22.4(D4⋊2S3) = D8⋊4Dic3 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.4(D4:2S3) | 192,756 |
C22.5(D4⋊2S3) = C4⋊C4.178D6 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C22 | 96 | | C2^2.5(D4:2S3) | 192,1159 |
C22.6(D4⋊2S3) = C6.702- 1+4 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C22 | 96 | | C2^2.6(D4:2S3) | 192,1161 |
C22.7(D4⋊2S3) = C6.462+ 1+4 | φ: D4⋊2S3/C4×S3 → C2 ⊆ Aut C22 | 48 | | C2^2.7(D4:2S3) | 192,1176 |
C22.8(D4⋊2S3) = M4(2).22D6 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.8(D4:2S3) | 192,382 |
C22.9(D4⋊2S3) = C42.196D6 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.9(D4:2S3) | 192,383 |
C22.10(D4⋊2S3) = C24.46D6 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C22 | 48 | | C2^2.10(D4:2S3) | 192,1152 |
C22.11(D4⋊2S3) = C4⋊C4.197D6 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C22 | 96 | | C2^2.11(D4:2S3) | 192,1208 |
C22.12(D4⋊2S3) = C6.852- 1+4 | φ: D4⋊2S3/C2×Dic3 → C2 ⊆ Aut C22 | 96 | | C2^2.12(D4:2S3) | 192,1224 |
C22.13(D4⋊2S3) = M4(2).D6 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C22 | 48 | 8+ | C2^2.13(D4:2S3) | 192,758 |
C22.14(D4⋊2S3) = M4(2).13D6 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C22 | 48 | 8- | C2^2.14(D4:2S3) | 192,759 |
C22.15(D4⋊2S3) = M4(2).15D6 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C22 | 48 | 8+ | C2^2.15(D4:2S3) | 192,762 |
C22.16(D4⋊2S3) = M4(2).16D6 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C22 | 96 | 8- | C2^2.16(D4:2S3) | 192,763 |
C22.17(D4⋊2S3) = C24.43D6 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C22 | 48 | | C2^2.17(D4:2S3) | 192,1146 |
C22.18(D4⋊2S3) = C6.802- 1+4 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C22 | 96 | | C2^2.18(D4:2S3) | 192,1209 |
C22.19(D4⋊2S3) = C6.1222+ 1+4 | φ: D4⋊2S3/C3⋊D4 → C2 ⊆ Aut C22 | 48 | | C2^2.19(D4:2S3) | 192,1217 |
C22.20(D4⋊2S3) = C24.23D4 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.20(D4:2S3) | 192,719 |
C22.21(D4⋊2S3) = C24.44D4 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.21(D4:2S3) | 192,736 |
C22.22(D4⋊2S3) = C24.29D4 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C22 | 96 | 4 | C2^2.22(D4:2S3) | 192,751 |
C22.23(D4⋊2S3) = C24.42D6 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C22 | 48 | | C2^2.23(D4:2S3) | 192,1054 |
C22.24(D4⋊2S3) = C6.52- 1+4 | φ: D4⋊2S3/C3×D4 → C2 ⊆ Aut C22 | 96 | | C2^2.24(D4:2S3) | 192,1072 |
C22.25(D4⋊2S3) = (C2×C12)⋊Q8 | central extension (φ=1) | 192 | | C2^2.25(D4:2S3) | 192,205 |
C22.26(D4⋊2S3) = C6.(C4×Q8) | central extension (φ=1) | 192 | | C2^2.26(D4:2S3) | 192,206 |
C22.27(D4⋊2S3) = Dic3.5C42 | central extension (φ=1) | 192 | | C2^2.27(D4:2S3) | 192,207 |
C22.28(D4⋊2S3) = Dic3⋊C42 | central extension (φ=1) | 192 | | C2^2.28(D4:2S3) | 192,208 |
C22.29(D4⋊2S3) = C3⋊(C42⋊8C4) | central extension (φ=1) | 192 | | C2^2.29(D4:2S3) | 192,209 |
C22.30(D4⋊2S3) = C3⋊(C42⋊5C4) | central extension (φ=1) | 192 | | C2^2.30(D4:2S3) | 192,210 |
C22.31(D4⋊2S3) = C6.(C4×D4) | central extension (φ=1) | 192 | | C2^2.31(D4:2S3) | 192,211 |
C22.32(D4⋊2S3) = C2.(C4×D12) | central extension (φ=1) | 192 | | C2^2.32(D4:2S3) | 192,212 |
C22.33(D4⋊2S3) = C2.(C4×Dic6) | central extension (φ=1) | 192 | | C2^2.33(D4:2S3) | 192,213 |
C22.34(D4⋊2S3) = Dic3⋊C4⋊C4 | central extension (φ=1) | 192 | | C2^2.34(D4:2S3) | 192,214 |
C22.35(D4⋊2S3) = C22.58(S3×D4) | central extension (φ=1) | 96 | | C2^2.35(D4:2S3) | 192,223 |
C22.36(D4⋊2S3) = D6⋊C42 | central extension (φ=1) | 96 | | C2^2.36(D4:2S3) | 192,225 |
C22.37(D4⋊2S3) = D6⋊C4⋊C4 | central extension (φ=1) | 96 | | C2^2.37(D4:2S3) | 192,227 |
C22.38(D4⋊2S3) = D6⋊C4⋊5C4 | central extension (φ=1) | 96 | | C2^2.38(D4:2S3) | 192,228 |
C22.39(D4⋊2S3) = D6⋊C4⋊3C4 | central extension (φ=1) | 96 | | C2^2.39(D4:2S3) | 192,229 |
C22.40(D4⋊2S3) = Dic3×C22⋊C4 | central extension (φ=1) | 96 | | C2^2.40(D4:2S3) | 192,500 |
C22.41(D4⋊2S3) = C24.55D6 | central extension (φ=1) | 96 | | C2^2.41(D4:2S3) | 192,501 |
C22.42(D4⋊2S3) = C24.56D6 | central extension (φ=1) | 96 | | C2^2.42(D4:2S3) | 192,502 |
C22.43(D4⋊2S3) = C24.14D6 | central extension (φ=1) | 96 | | C2^2.43(D4:2S3) | 192,503 |
C22.44(D4⋊2S3) = C24.15D6 | central extension (φ=1) | 96 | | C2^2.44(D4:2S3) | 192,504 |
C22.45(D4⋊2S3) = C24.57D6 | central extension (φ=1) | 96 | | C2^2.45(D4:2S3) | 192,505 |
C22.46(D4⋊2S3) = C24.58D6 | central extension (φ=1) | 96 | | C2^2.46(D4:2S3) | 192,509 |
C22.47(D4⋊2S3) = C24.19D6 | central extension (φ=1) | 96 | | C2^2.47(D4:2S3) | 192,510 |
C22.48(D4⋊2S3) = C24.23D6 | central extension (φ=1) | 96 | | C2^2.48(D4:2S3) | 192,515 |
C22.49(D4⋊2S3) = C24.24D6 | central extension (φ=1) | 96 | | C2^2.49(D4:2S3) | 192,516 |
C22.50(D4⋊2S3) = C24.60D6 | central extension (φ=1) | 96 | | C2^2.50(D4:2S3) | 192,517 |
C22.51(D4⋊2S3) = C12⋊(C4⋊C4) | central extension (φ=1) | 192 | | C2^2.51(D4:2S3) | 192,531 |
C22.52(D4⋊2S3) = C4.(D6⋊C4) | central extension (φ=1) | 192 | | C2^2.52(D4:2S3) | 192,532 |
C22.53(D4⋊2S3) = Dic3×C4⋊C4 | central extension (φ=1) | 192 | | C2^2.53(D4:2S3) | 192,533 |
C22.54(D4⋊2S3) = Dic3⋊(C4⋊C4) | central extension (φ=1) | 192 | | C2^2.54(D4:2S3) | 192,535 |
C22.55(D4⋊2S3) = (C4×Dic3)⋊9C4 | central extension (φ=1) | 192 | | C2^2.55(D4:2S3) | 192,536 |
C22.56(D4⋊2S3) = C6.67(C4×D4) | central extension (φ=1) | 192 | | C2^2.56(D4:2S3) | 192,537 |
C22.57(D4⋊2S3) = C4⋊C4⋊5Dic3 | central extension (φ=1) | 192 | | C2^2.57(D4:2S3) | 192,539 |
C22.58(D4⋊2S3) = C4⋊C4⋊6Dic3 | central extension (φ=1) | 192 | | C2^2.58(D4:2S3) | 192,543 |
C22.59(D4⋊2S3) = C4⋊(D6⋊C4) | central extension (φ=1) | 96 | | C2^2.59(D4:2S3) | 192,546 |
C22.60(D4⋊2S3) = D6⋊C4⋊7C4 | central extension (φ=1) | 96 | | C2^2.60(D4:2S3) | 192,549 |
C22.61(D4⋊2S3) = C24.29D6 | central extension (φ=1) | 96 | | C2^2.61(D4:2S3) | 192,779 |
C22.62(D4⋊2S3) = C24.30D6 | central extension (φ=1) | 96 | | C2^2.62(D4:2S3) | 192,780 |
C22.63(D4⋊2S3) = C2×C23.16D6 | central extension (φ=1) | 96 | | C2^2.63(D4:2S3) | 192,1039 |
C22.64(D4⋊2S3) = C2×Dic3.D4 | central extension (φ=1) | 96 | | C2^2.64(D4:2S3) | 192,1040 |
C22.65(D4⋊2S3) = C2×C23.8D6 | central extension (φ=1) | 96 | | C2^2.65(D4:2S3) | 192,1041 |
C22.66(D4⋊2S3) = C2×Dic3⋊4D4 | central extension (φ=1) | 96 | | C2^2.66(D4:2S3) | 192,1044 |
C22.67(D4⋊2S3) = C2×C23.9D6 | central extension (φ=1) | 96 | | C2^2.67(D4:2S3) | 192,1047 |
C22.68(D4⋊2S3) = C2×C23.11D6 | central extension (φ=1) | 96 | | C2^2.68(D4:2S3) | 192,1050 |
C22.69(D4⋊2S3) = C2×C23.21D6 | central extension (φ=1) | 96 | | C2^2.69(D4:2S3) | 192,1051 |
C22.70(D4⋊2S3) = C2×Dic6⋊C4 | central extension (φ=1) | 192 | | C2^2.70(D4:2S3) | 192,1055 |
C22.71(D4⋊2S3) = C2×Dic3.Q8 | central extension (φ=1) | 192 | | C2^2.71(D4:2S3) | 192,1057 |
C22.72(D4⋊2S3) = C2×C4.Dic6 | central extension (φ=1) | 192 | | C2^2.72(D4:2S3) | 192,1058 |
C22.73(D4⋊2S3) = C2×C4⋊C4⋊7S3 | central extension (φ=1) | 96 | | C2^2.73(D4:2S3) | 192,1061 |
C22.74(D4⋊2S3) = C2×C4.D12 | central extension (φ=1) | 96 | | C2^2.74(D4:2S3) | 192,1068 |
C22.75(D4⋊2S3) = C2×C4⋊C4⋊S3 | central extension (φ=1) | 96 | | C2^2.75(D4:2S3) | 192,1071 |
C22.76(D4⋊2S3) = C2×D4×Dic3 | central extension (φ=1) | 96 | | C2^2.76(D4:2S3) | 192,1354 |
C22.77(D4⋊2S3) = C2×C23.23D6 | central extension (φ=1) | 96 | | C2^2.77(D4:2S3) | 192,1355 |
C22.78(D4⋊2S3) = C2×C23.12D6 | central extension (φ=1) | 96 | | C2^2.78(D4:2S3) | 192,1356 |
C22.79(D4⋊2S3) = C2×D6⋊3D4 | central extension (φ=1) | 96 | | C2^2.79(D4:2S3) | 192,1359 |
C22.80(D4⋊2S3) = C2×C23.14D6 | central extension (φ=1) | 96 | | C2^2.80(D4:2S3) | 192,1361 |
C22.81(D4⋊2S3) = (C2×C4)⋊Dic6 | central stem extension (φ=1) | 192 | | C2^2.81(D4:2S3) | 192,215 |
C22.82(D4⋊2S3) = C6.(C4⋊Q8) | central stem extension (φ=1) | 192 | | C2^2.82(D4:2S3) | 192,216 |
C22.83(D4⋊2S3) = (C2×Dic3).9D4 | central stem extension (φ=1) | 192 | | C2^2.83(D4:2S3) | 192,217 |
C22.84(D4⋊2S3) = (C2×C4).17D12 | central stem extension (φ=1) | 192 | | C2^2.84(D4:2S3) | 192,218 |
C22.85(D4⋊2S3) = (C2×C4).Dic6 | central stem extension (φ=1) | 192 | | C2^2.85(D4:2S3) | 192,219 |
C22.86(D4⋊2S3) = (C22×C4).85D6 | central stem extension (φ=1) | 192 | | C2^2.86(D4:2S3) | 192,220 |
C22.87(D4⋊2S3) = (C22×C4).30D6 | central stem extension (φ=1) | 192 | | C2^2.87(D4:2S3) | 192,221 |
C22.88(D4⋊2S3) = (C22×S3)⋊Q8 | central stem extension (φ=1) | 96 | | C2^2.88(D4:2S3) | 192,232 |
C22.89(D4⋊2S3) = (C2×C4).21D12 | central stem extension (φ=1) | 96 | | C2^2.89(D4:2S3) | 192,233 |
C22.90(D4⋊2S3) = C6.(C4⋊D4) | central stem extension (φ=1) | 96 | | C2^2.90(D4:2S3) | 192,234 |
C22.91(D4⋊2S3) = (C2×C12).33D4 | central stem extension (φ=1) | 96 | | C2^2.91(D4:2S3) | 192,236 |
C22.92(D4⋊2S3) = C23⋊2Dic6 | central stem extension (φ=1) | 96 | | C2^2.92(D4:2S3) | 192,506 |
C22.93(D4⋊2S3) = C24.17D6 | central stem extension (φ=1) | 96 | | C2^2.93(D4:2S3) | 192,507 |
C22.94(D4⋊2S3) = C24.18D6 | central stem extension (φ=1) | 96 | | C2^2.94(D4:2S3) | 192,508 |
C22.95(D4⋊2S3) = C24.20D6 | central stem extension (φ=1) | 96 | | C2^2.95(D4:2S3) | 192,511 |
C22.96(D4⋊2S3) = C24.21D6 | central stem extension (φ=1) | 96 | | C2^2.96(D4:2S3) | 192,512 |
C22.97(D4⋊2S3) = C24.25D6 | central stem extension (φ=1) | 96 | | C2^2.97(D4:2S3) | 192,518 |
C22.98(D4⋊2S3) = C24.27D6 | central stem extension (φ=1) | 96 | | C2^2.98(D4:2S3) | 192,520 |
C22.99(D4⋊2S3) = (C2×C4).44D12 | central stem extension (φ=1) | 192 | | C2^2.99(D4:2S3) | 192,540 |
C22.100(D4⋊2S3) = (C2×C12).54D4 | central stem extension (φ=1) | 192 | | C2^2.100(D4:2S3) | 192,541 |
C22.101(D4⋊2S3) = (C2×Dic3).Q8 | central stem extension (φ=1) | 192 | | C2^2.101(D4:2S3) | 192,542 |
C22.102(D4⋊2S3) = (C2×C12).288D4 | central stem extension (φ=1) | 192 | | C2^2.102(D4:2S3) | 192,544 |
C22.103(D4⋊2S3) = (C2×C12).55D4 | central stem extension (φ=1) | 192 | | C2^2.103(D4:2S3) | 192,545 |
C22.104(D4⋊2S3) = (C2×C12).289D4 | central stem extension (φ=1) | 96 | | C2^2.104(D4:2S3) | 192,551 |
C22.105(D4⋊2S3) = (C2×C12).56D4 | central stem extension (φ=1) | 96 | | C2^2.105(D4:2S3) | 192,553 |
C22.106(D4⋊2S3) = C24.31D6 | central stem extension (φ=1) | 96 | | C2^2.106(D4:2S3) | 192,781 |
C22.107(D4⋊2S3) = C24.32D6 | central stem extension (φ=1) | 96 | | C2^2.107(D4:2S3) | 192,782 |